Combining finite element space-discretizations with symplectic time-marching schemes for linear Hamiltonian systems

نویسندگان

چکیده

We provide a short introduction to the devising of special type methods for numerically approximating solution Hamiltonian partial differential equations. These use Galerkin space-discretizations which result in system ODEs displaying discrete version structure original system. The resulting is then discretized by symplectic time-marching method. This combination results high-order accurate, fully can preserve invariants defining ODE restrict our attention linear systems, as main be obtained easily and directly, are applicable many systems practical interest including acoustics, elastodynamics, electromagnetism. After brief description interest, we does not require any background on subject. describe case finite-difference used focus popular Yee scheme (1966) Finally, consider finite-element space discretizations. emphasis placed conservation properties schemes. end describing ongoing work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Hamiltonian Finite Element Method for Linear Hyperbolic Systems

We develop a Hamiltonian discontinuous finite element discretization of a generalized Hamiltonian system for linear hyperbolic systems, which include the rotating shallow water equations, the acoustic and Maxwell equations. These equations have a Hamiltonian structure with a bilinear Poisson bracket, and as a consequence the phase-space structure, “mass” and energy are preserved. We discretize ...

متن کامل

High-Order Symplectic Schemes for Stochastic Hamiltonian Systems

The construction of symplectic numerical schemes for stochastic Hamiltonian systems is studied. An approach based on generating functions method is proposed to generate the stochastic symplectic integration of any desired order. In general the proposed symplectic schemes are fully implicit, and they become computationally expensive for mean square orders greater than two. However, for stochasti...

متن کامل

Second Order Conformal Symplectic Schemes for Damped Hamiltonian Systems

Numerical methods for solving weakly damped Hamiltonian systems are constructed using the popular Störmer-Verlet and implicit midpoint methods. Each method is shown to preserve dissipation of symplecticity and dissipation of angular momentum of an N -body system with pairwise distance dependent interactions. Necessary and sufficient conditions for second order accuracy are derived. Analysis for...

متن کامل

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

A Posteriori Error Analysis of Space-Time Finite Element Discretizations of the Time-Dependent Stokes Equations

We present a novel a posteriori error analysis of spacetime finite element discretizations of the time-dependent Stokes equations. Our analysis is based on the equivalence of error and residual and a suitable decomposition of the residual into spatial and temporal contributions. In contrast to existing results we directly bound the error of the full space-time discretization and do not resort t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Applied Mathematics and Statistics

سال: 2023

ISSN: ['2297-4687']

DOI: https://doi.org/10.3389/fams.2023.1165371